永利娱高·(ylg)060net-Apple App Store
当前位置: 首页 >> 新闻中心 >> 通知公告 >> 正文

学 术 报 告

发布者: [发表时间]:2022-09-22 [来源]: [浏览次数]:

报告主题:Superconvergence of Discontinuous Galerkin Methods (局部间断有限元超收敛)

报告人: 张智民,韦恩州立大学, 教育部长江学者讲座教授(中山大学)

报告时间:2022年9月15日(周四)10:00-11:00

报告地点:腾讯会议899-685-018



摘要:Superconvergence phenomenon is well understood for the h-version finite element method and researchers in this old field have accumulated a vast literature during the past 50 years. However, the relevant study for other numerical methods such as the p-version finite element method, spectral methods, discontinuous Galerkin methods, and finite volume methods is lacking. We believe that the scientific community would also benefit from the study of superconvergence phenomenon of those methods. In recent years, efforts have been made to expand the territory of the superconvergence. In this talk, we present some recent development on superconvergence study for discontinuous Galerkin methods.


专家介绍:

张智民,中国科技大学学士(1982)硕士(1985,导师石钟慈),马里兰大学(University of Maryland at College Park)博士 (1991,导师Ivo Babuska); 德州理工大学(Texas Tech University )客座助理教授(Visiting Assistant Professor,1991)助理教授( Assistant Professor Tenure-track,1993)副教授(Associate Professor with tenure,1997),韦恩州立大学(Wayne State University )副教授(1999)教授(full Professor,2002) Charles H. Gershenson Distinguished Faculty Fellow (2014); 教育部长江学者讲座教授(中山大学,2010-2012);担任或曾任“Mathematics of Computation“、“Journal of Scientific Computing”等9个国际计算数学杂志编委,研究方向是偏微分方程数值解,包括有限元,有限体积,谱方法等,发表学术论文200余篇;提出的多项式保持重构Polynomial Preserving Recovery(PPR)格式于2008年被国际上广为流行的大型商业软件 COMSOL Multiphysics采用,并使用至今。


XML 地图 | Sitemap 地图